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The Problem with RNNS /1 ico0ara time!

- Lots of information crammed into a single vector

- Information takes a long path through the system

Long range dependencies are hard

Vanishing or exploding gradients likely



“Attention Is All You Need”

- Attention is all you need
- Recurrence free

- Enables large models



Scaled Dot-Product Attention Multi-Head Attention

t
1 Linear
MatMul A
i 1 Concat
SoftMax VY
4 A '
Mask (opt.) Scaled Dot-Product g
) Attention
Sooke 1AM 1 I—_ 1]
1 -= r= r-=
MatMul Linear Linear Linear
Q K V
V K Q

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.



Leveraging existing resources

https://courses.cs.washington.edu/courses/cse447/22sp/assets/slides/lec13.pdf#page=29



https://courses.cs.washington.edu/courses/cse447/22sp/assets/slides/lec13.pdf#page=29

Attention

- Pick and choose which word has to do with which other word(s)

QK'

Attention(Q, K, V') = softmax(
vy

WV



Query, Key, Value Whiteboard time!

- Word Embeddings

What does each word mean?

- Q,K,V projections

Extract and organize information

- Scaled dot product using Q,K

Match keys to queries

- Softmax and multiply by V

Weighted average of values



More heads Multi-Head Attention
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.



A slight problem

- Weighted average of words — all positional information lost
-  Effectively, we just have a very advanced bag of words

- Fixed by directly providing positional information
- Arguably a hack, but it does work



Positional Encoding Whiteboard time!
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Turksort: Sorting with Human Intelligence

http://sigbovik.org/2020/proceedings.pdf#fsubsection.0.25



http://sigbovik.org/2020/proceedings.pdf#subsection.0.25

RISE: Randomized Input Sampling for
Explanation of Black-box Models

http://sigbovik.ora/2020/proceedings.pdffsubsection.0.25



https://arxiv.org/pdf/1806.07421.pdf

A project proposal

- “RISE works on black-box models”

- The natural insight: Explaining human perception via RISE

If RISE works on black-box models, we should be able to apply it to Amazon Mechanical Turk






The Transformer
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Figure 1:

(shifted right)

The Transformer - model architecture.



The Transformer — Encoder
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The Transformer — Encoder

Stack many of those attention
layers on top of each other
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The Transformer

- “Encoder” extracts relevant
information, organized into K,V

- “Decoder” constructs relevant

queries to ‘search’ that information.
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Figure 1: The Transformer - model architecture.



But why is this any good?

- Path length

Equal path lengths enable learning long range dependencies
- Speed

- Avoids gradient vanishing/explosion



Attention is all you need

http://sigbovik.org/2020/proceedings.pdf#fsubsection.0.25



https://arxiv.org/pdf/1706.03762.pdf

