Attention and Transformers

Yegor Kuznetsov

Sequence to Sequence

this cat is very large

 \downarrow

este gato es muy grande

Sequence to Sequence

this cat is very large

 \downarrow

este gato es muy _____

The Problem with RNNs Whiteboard time!

- Lots of information crammed into a single vector
- Information takes a long path through the system
 - Long range dependencies are hard
 - Vanishing or exploding gradients likely

"Attention Is All You Need"

- Attention is all you need
- Recurrence free
- Enables large models

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

Leveraging existing resources

https://courses.cs.washington.edu/courses/cse447/22sp/assets/slides/lec13.pdf#page=29

Attention

- Pick and choose which word has to do with which other word(s)

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Query, Key, Value

Whiteboard time!

- Word Embeddings
 - What does each word mean?
- Q,K,V projections
 - Extract and organize information
- Scaled dot product using Q,K
 - Match keys to queries
- Softmax and multiply by V
 - Weighted average of values

More heads

3.2.2 Multi-Head Attention

Instead of performing a single attention function with d_{model} -dimensional keys, values and queries, we found it beneficial to linearly project the queries, keys and values h times with different, learned linear projections to d_k , d_k and d_v dimensions, respectively. On each of these projected versions of queries, keys and values we then perform the attention function in parallel, yielding d_v -dimensional output values. These are concatenated and once again projected, resulting in the final values, as depicted in Figure 2.

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)

Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

A slight problem

- Weighted average of words \rightarrow all positional information lost
 - Effectively, we just have a very advanced bag of words
- Fixed by directly providing positional information
 - Arguably a hack, but it does work

Positional Encoding

Whiteboard time!

Click to add tilte

Sorting:

Comparisons.

10 > 4

Cilck to add title

Clikc to add title

Turksort: Sorting with Human Intelligence

http://sigbovik.org/2020/proceedings.pdf#subsection.0.25

RISE: Randomized Input Sampling for Explanation of Black-box Models

http://sigbovik.org/2020/proceedings.pdf#subsection.0.25

A project proposal

- "RISE works on black-box models"
- The natural insight: Explaining human perception via RISE
 - If RISE works on black-box models, we should be able to apply it to Amazon Mechanical Turk

Figure 1: The Transformer - model architecture.

The Transformer

The Transformer – Encoder

The Transformer – Encoder

- Stack many of those attention layers on top of each other

The Transformer

- "Encoder" extracts relevant information, organized into K,V
- "Decoder" constructs relevant queries to 'search' that information.

Figure 1: The Transformer - model architecture.

But why is this any good?

- Path length
 - Equal path lengths enable learning long range dependencies
- Speed
- Avoids gradient vanishing/explosion

Attention is all you need

http://sigbovik.org/2020/proceedings.pdf#subsection.0.25