Attention and Transformers

Yegor Kuznetsov

Sequence to Sequence

this cat is very large

!

este gato es muy grande

Sequence to Sequence

this cat is very large

!

este gato es muy

The Problem with RNNS /1 ico0ara time!

- Lots of information crammed into a single vector

- Information takes a long path through the system

Long range dependencies are hard

Vanishing or exploding gradients likely

“Attention Is All You Need”

- Attention is all you need
- Recurrence free

- Enables large models

Scaled Dot-Product Attention Multi-Head Attention

t
1 Linear
MatMul A
i 1 Concat
SoftMax VY
4 A '
Mask (opt.) Scaled Dot-Product g
) Attention
Sooke 1AM 1 I—_ 1]
1 -= r= r-=
MatMul Linear Linear Linear
Q K V
V K Q

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

Leveraging existing resources

https://courses.cs.washington.edu/courses/cse447/22sp/assets/slides/lec13.pdf#page=29

https://courses.cs.washington.edu/courses/cse447/22sp/assets/slides/lec13.pdf#page=29

Attention

- Pick and choose which word has to do with which other word(s)

QK'

Attention(Q, K, V') = softmax(
vy

WV

Query, Key, Value Whiteboard time!

- Word Embeddings

What does each word mean?

- Q,K,V projections

Extract and organize information

- Scaled dot product using Q,K

Match keys to queries

- Softmax and multiply by V

Weighted average of values

More heads Multi-Head Attention
)

Linear
3.2.2 Multi-Head Attention 1

Instead of performing a single attention function with d;,y4.;-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values A times with different, learned Concat
linear projections to dy, di and d,, dimensions, respectively. On each of these projected versions of T

queries, keys and values we then perform the attention function in parallel, yielding d,,-dimensional ;
output values. These are concatenated and once again projected, resulting in the final values, as =

depicted in Figure[2} Scaled Dot-Product n
Attention
e L | — |1
/ 1 — O
MultiHead(Q, K, V) = Concat(head;, ..., heady,)W Unsar B Linesr D Liicar l
where head; = Attention(QWiQ, K WiK, VWiV) (
V K Q

Scaled Dot-Product Attention Multi-Head Attention

t
1 Linear
MatMul A
i 1 Concat
SoftMax VY
4 A '
Mask (opt.) Scaled Dot-Product g
) Attention
Sooke 1AM 1 I—_ 1]
1 -= r= r-=
MatMul Linear Linear Linear
Q K V
V K Q

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

A slight problem

- Weighted average of words — all positional information lost
- Effectively, we just have a very advanced bag of words

- Fixed by directly providing positional information
- Arguably a hack, but it does work

Positional Encoding Whiteboard time!

1.00 -

0.75 1

0.50 -

0.25 1

0.00

—0.25

—0.50 -

—0.75 A

—1.00 -

20 40 60 80 100

o A

Click to add tilte
Sorting:
Comparisons.

10 >4

Cilck to add title

Clikc to add title

Turksort: Sorting with Human Intelligence

http://sigbovik.org/2020/proceedings.pdf#fsubsection.0.25

http://sigbovik.org/2020/proceedings.pdf#subsection.0.25

RISE: Randomized Input Sampling for
Explanation of Black-box Models

http://sigbovik.ora/2020/proceedings.pdffsubsection.0.25

https://arxiv.org/pdf/1806.07421.pdf

A project proposal

- “RISE works on black-box models”

- The natural insight: Explaining human perception via RISE

If RISE works on black-box models, we should be able to apply it to Amazon Mechanical Turk

The Transformer

Output
Probabilities

-
Add & Norm
Feed
Forward
4 1 ~\ | Add & Norm ;
Add & hoan Multi-Head
Feed Attention
Forward J) Nx
—
Nix Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
it At
k_ J _ —
Positional o) ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

Figure 1:

(shifted right)

The Transformer - model architecture.

The Transformer — Encoder

Add & Norm

Feed
Forward

A

Add & Norm

Multi-Head
Attention

At

The Transformer — Encoder

Stack many of those attention
layers on top of each other

Add & Norm

Multi-Head
Attention

~——

—————\
Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

1

Multi-Head
Attention

t 2

Multi-Head
Attention

Positional
Encoding

D

Input
Embedding

Inputs

e i ~
~>| Add & Norm }
Feed
Forward
—
Nx | {Add & Norm)
Multi-Head
Attention
it
C— J
Positional D
Encoding
Input
Embedding

I

Inputs

The Transformer

- “Encoder” extracts relevant
information, organized into K,V

- “Decoder” constructs relevant

queries to ‘search’ that information.

Output

Probabilities
(.)
[Add & Norm |
Feed
Forward
4 1 N\ | Add & Norm IT:
—*{adds tora) Multi-Head
Feed Attention
Forward 7 7 Nx
—
Nis¢ Add & Norm
f—>| Add & Norm | Maskod
Multi-Head Multi-Head
Attention Attention
At) At
_ J § _J)
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

But why is this any good?

- Path length

Equal path lengths enable learning long range dependencies
- Speed

- Avoids gradient vanishing/explosion

Attention is all you need

http://sigbovik.org/2020/proceedings.pdf#fsubsection.0.25

https://arxiv.org/pdf/1706.03762.pdf

